Fields

The concepts behind fields and how to configure them
v1.27

Sirenia

September 23, 2020




Fields

September 23,2020

Contents

1 Defining afield

1.1

1.2

1.3

Pathstofields . . . . .. ... .........
1.1.1 Path segments
1.1.2  Special and advanced techniques
Opticalfields . . ... .............
1.2.1  Using the built-in screenshot-taker
Testingapath . . . ... ............

1.3.1  Using Cuesta

1.3.2  Using a flow or the debugger

2 Fields API

2.1

2.2

2.3

2.4

2.5

2.6

2.7

211  Parameters . . . ... ... ... ...
212 Example ... ... 0L
213 Support. ... .. ... ...
Clickwithoffset. . . . ... ... .......
221 Parameters . . ... ... ... ....
222 Example ... ... ... 0.
223 Support. ... ... ...
SimulatedClick . . . . ... ... .......
231 Example ... ...... ... ...,
232 Support. . ....... ...

241 Example ... ... .. 00
242 Support. ... ... ... ...
Rightclick . . . .. ... ... .........
251 Parameters . . ... ... ... ....
252 Example .. ........ ..., .
253 Support. ... .. ... ...

Simulated click with offset
Right-click with offset

2.6.1 Parameters . . . ... ... ... ...
2,62 Example . ...............
26.3 Support. ... .. ... ... ..
Doubleclick . . ... ... ... ... .....
271 Parameters . . . ... ... ... ...
272 Example ... ....... .. ...,

Sirenia



Fields September 23,2020
273 SUppOrt . . .o e e e e 18

2.8 Double-clickwithoffset . .. .. ... ... .. ... .. . . . . e 18
2.8.1 Parameters . . . . . .. L e e e e e e e e 18
2.8.2 Example . .. e e 18
2.8.3 SUppOrt . . . e e e 18

2.9 Clickcell. . . . .. o e e 19
291 Parameters . . . . . . e e e e e e e e e e e e 19
2.9.2 Example . .. e e 19
2.9.3 Support. . .. e e e 20
200 Read . . . . . o e 20
2001 Parameters . . . . . L e e e e e e e e e e e 20
2.10.2 Example . .. e e e 20
2.00.3 Support . . .. e e e e e 20

201 BoUNdS . . . e e e e e e 21
202 EXiSES . . . e e e e e e e e e e e 21
2021 Example . .o e e e e e e e 21
2022 SUppPOrt . . . e e e e e 21
203 INSpect . . . L e e e e e e e e e e e e e e e 21
2130 Parameters . . . . . e e e e e e e e e e e e 21
2.13.2 Reflectiondepth . . . . . . . . . .. .. 22
2133 Example . .. e e e e 22
2034 SUPPOIt . . . e e e e e e e 22
204 Input . . oL e e e e e e e e e e 23
2040 Parameters . . . . . . e e e e e e e e e e 23
2142 Example . . ... e e e e e 23
2043 SUPPOIt . « . e e e e e e e 23
215 Nativeinput. . . . . . o e e e e e e e e 23
2051 Parameters . . . . . .. e e e e e e e 24
2152 Example . . ... e e e e 24
21053 SUPPOIt . . . o e e e e e e e 24
2.16 Nativeinputwithdelay . . . . . . . . . . . . . e 24
2061 Parameters . . . . . .. e e e e e 24
2.16.2 Example . . . .. e e e e e 24
2063 SUPPOIt . . . ot e e e e e 24
207 Select . . . oL e e e 25
2070 Parameters . . . . . .. e e e e e e 25
2172 Example . . . e e e e e 26
2073 SUPPOIt . . . o e e e e e e 26
Sirenia 3



Fields September 23,2020
218 Selectwithindex . . . . . . . . e e 26
2.108.1 Parameters . . . . .. e e e e e e e e e e e e e e 26
2.18.2 Example . . . . e e 26
2083 SUppOrt . . . e e e e 26

219 Selectwithoffset . . . . . . . .. ... .. . 27
2091 Parameters . . . . . . e e e e e e e e e e e e e e e e e e 27
2.19.2 Example . ... e e e 27
2093 Support . . . e e e e e e 27
2.20 Selectwithoffsetandskip . . .. ... ... ... ... ... .. ... ... ..., 27
2.20.1 Parameters . . . . . . e e e e e e e e e e e e e e e e e e e e 27
2.20.2 Example . . .. e e e 27
2.20.3 SUPPOrt . . . e e e e e e 28

221 Editcell . . ..o 28
2210 Parameters . . . . . . e e e e e e e e e e e e e e e e e e e e 28
2.21.2 Example . . . e e e 28
2.22 Highlight . . . . . . . . 29
2220 Example ... e e e e e 29
2.22.2 SUPPOIT .« o o e e e e e e e e e 29
2.23 Highlightwithcolor . . ... .. ... .. .. . . . . 29
2,231 Parameters . . . . . . e e e e e e e 30
2.23.2 Example . .. e e e e 30
2.23.3 SUPPOIt .« . o e e e e e e e e e 30
224 Lowlight . . . . . . . . 30
2240 Example . .. e e e e e 30
2.24.2 SUPPOIt .« v o o e e e e e e e e e e e e e e e e e e e e e e e e 30

When configuring an application for automation purposes it is often necessary to interact with the

user-interface of the application in some manner. A field as concept in Cuesta represents an element

in the user-interface which can be interacted with.

This can be a button, a dropdown, a table or any other type of user-interface element. Once defined

a field can be manipulated in a flow, e.g. clicking a button named Ok would look like the following in

a flow:

Fields.Ok. O

What happens in that statement is that we get the Ok field from the Fie'ld object. If the field name

is not a valid Javascript variable name, then use the object indexing scheme instead, e.g.:

Sirenia



Fields September 23,2020

Fields[’0Ok’].click()s

1 Defining a field

A field can be identified from its path or using a screenshot of the field. The path approach utilizes
structural information in the user-interface while the screenshot is purely visual making it more brittle
wrt changes in application appearance. The Cuesta form for defining a field is given below:

Green background indicates
that the field will be found using

this path and not the screenshot
Launch the field finder

Means to locate field

Path 2

Mo screenshot

X offset Y offset

Screenshot
Match

confidence

Detect field o Grab screenshot = .

Figure 1: Defining a field in Cuesta

1.1 Paths to fields

Auser-interface has a structure like a tree with the root of the tree being the window and the elements
the branching structure. For instance the following application layout:

Sirenia 5



Fields

September 23,2020

The structure of the user-interface above can be mapped to a tree like so:

Window
I
I
I
Y,
Panel
I
I
Fom o +
I I |
I I |
v v v
TextField - Hello ... Button - OK Button - Cancel

To identify e.g. the Cancel button we use a scheme where you provide the path from the root of the
application to the element to be identified. In the example above an identifying could be (marked

with *):

*Windowx

Sirenia



Fields September 23,2020

v
*Panelx
I
I
Fom Fom +
I I |
I I |
v v v
TextField - Hello ... Button - OK *Button - Cancelx

And in a textual form this translates to:

Panel/Button - Cancel

1.1.1 Path segments

Paths are compromised of a number of segments; one for each step down in the tree structure. Each
segment matches itself against a user-interface element, checking a set of predefined properties on
the element. These are commonly:

+ The type of the element (e.g. TextField, Label)
« The automation-id if present

« The textual content of the element

« The given name of the element

« and more...

Thus the path in the previous example can be shortened to:
Panel/Cancel

The default matching algorithm for each segment simply checks if the given string is a substring of
the extracted element property. Using a few simple operatorswe provide more flexibility and greater
accuracy:

« *ancel matches any string ending with "ancel”

+ Can* matches any string starting with "Can”

« *an* matches any string containing "an”

« ".+an.+" matches the string against the regular expression . +an. +

Furthermore the segment *x* can be used to match deep into the structure, e.g. the path:

*%x /Cancel

Sirenia 7



Fields September 23,2020

Will match the first element matching Cancel anywhere in the structure. This can also be used like
so:

Panel/xx/Cancel

Which matches any Cancel element with a Pane'l ancestor.

1.1.2 Special and advanced techniques

The following is a list of semi-rarely used techniques which can prove useful in tricky and non-
accessible user-interfaces.

Locating via relative position

Ifitis not possible to locate afield directly then it may be possible to use another more easily locatable
field as a sort of anchor and then using the relative (according to the anchor) position of the desired
field as a guide. This is often the case with fields that have easily locatable labels. Using the label
as the anchor and then specifying e.g. that the desired field is the textfield below the anchor is then
possible. A positional path looks like:

*x /Panel/AnchorElement<above>DesiredElement

This path will cause the AnchorElement to be found and then a search for the nearest
DesiredElement below the anchor. It should be read as "look for a Panel element somewhere
in the tree, then find a child AnchorElement which is positioned above a DesiredElement
which is our target”.

The possible positional hints are:

+ <above> the anchor element must be found above the target

+ <below> the anchor element must be found below the target

+ <left-of> the anchor element must be found left of the target

« <right-of> the anchor element must be found right of the target
+ <nearest> the nearest matching element to the anchor is selected

The closest match is the one selected if there are more matching elements in all the above cases.

Another possibility is to define a field based on the path to an element and an offset in pixels from that
elementtofind asecond element. The syntax looks as follows: *x /OkButton<offset-with>@-10|200.
This will locate an element 10 pixels to the left and 200 pixels below the upper left corner of some Ok

button.

Sirenia 8



Fields September 23,2020

Locating via structural hints

For fields that can best be identified by their placement in the Ul tree, we can use structural hints.
These allow an element to be identified by a unique child or sibling it may have. An example could be
an input with no unique features, which has an easily identifiable label as its sibling. The path syntax
is like the positional hints:

** /Panel/AnchorElement<sibling-of>DesiredElement
The available structural hints are:

+ <child-of> the anchor element must be a child of the target
+ <sibling-of> the anchor element must be a sibling of the target

Skipping matches

In case the user-interface contains "twins” i.e. undistinguishable elementsin the same level of the tree
then then the skip operator (#) can be used to select the i’th matching sibling. Consider the following

tree:

Panel
| - Button
|- Button
‘-~ Button

In order to target the 2nd button we might use the following path:
Panel/Button#1l

The skip operator can only be used with the last element in the path and will thus only apply to the
siblings of the targeted element.

Restricting path property types (native applications only)

To increase path resolution speed in native applications you can specify which property on
the Ul element should be used for matching each path segment by prefixing the segment with
(<type-goes-here>). A button with the text "Ok” can then be specified with x*x/ (text) Ok.
The type can appear on all segments e.g.

**x [/ (type)Panel/ (text)Ok
Which resolves any Ul element with the text Ok” directly inside a panel.
The available property-types are:

« idthe (automation)id of the element

Sirenia 9



Fields September 23,2020

text the text representation of the element (normally the text you can see in the Ul)
class the class of the Ul element

type the type of the Ul element
« name the name of the Ul element

l” ”» »
)

The type can be "button”, ”panel”, "menu”, "textbox” etc.

Backtracking (in web-applications only)

Another rarely occurring case is when the target can only be uniquely matched by targeting one of its
descendents. In the following example we have a clearly locatable Ok Button but we are really only
interested in an anonymous Pane locate two levels up in the tree.

Panel <- this 1is our target
‘— Panel
‘— Button - Ok <- this is the Button we can locate

Here we can target the desired panel by way of the following path:
[Panel] /Panel/0Ok

The [ and ] effectively tells the path targeting mechanism to do the full path resolution but return the
element contained within.

Using CSS selectors (in web-applications only)

An alternative path format for use in web-applications is using CSS selectors. In some cases using CSS
selectors is easier and faster. E.g. for finding an element with a specificid:

#the-1id
vs the normal path format:
** /the-1id

The latter being faster.

Searching a specific embedded window

Given a multi-window application or an application with many embedded "windows”, it is sometimes
useful to limit the search for a given element to a specific window. This is done by prefixing the path
with {title-of-window} and thus limiting the search to any windows whose title matches the
given. E.g.:

{MyWindow}**/Panel/Ok

Sirenia 10


https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

Fields September 23,2020

1.2 Optical fields

Optical fields are simply small screenshots of the user-interface element with an optional offset which
Manatee will try to find visually and translate to a proper element. The offsetis used e.g. when clicking
s.t. the actual click is offset from the found location of the element.

1.2.1 Using the built-in screenshot-taker

If the field can only be identified by a screenshort press the Grab screenshot button. A red square will
appear which can be move and resized to fit the field. When the red square fits the field click on the
square once. The square turns green and is now fixed to the field. In order to be able to click on the
field (if applicable) click on the position on the screen where the click must be done. A red dot will
show where the click will be done.

X

Middle button

Xoffset 5 Yoffset

36 13
Screenshot
Match
confidence
07 %
Grab screenshot = -
Screenshot of application Ul
element is grabbed from the
running application
Ié‘ Ill
Disable middle button o
Middle button

Figure 2: The built-in screenshot taker in action

Sirenia 1



Fields September 23,2020

The screenshort is shown in Cuesta. The click position can be adjusted in the X and Y offset fields.
Match confidence can be set to reduce how acurately the screenshort should match the graphics on
the screen in the application in order to have a match on the field. It can typically be set to 0.7.

1.3 Testing a path

Given a path it is useful to be able to see that the element found when the path resolution is done in
Manatee is the correct element found. This can be done directly from Cuesta or by using the field in a
flow.

1.3.1 Using Cuesta

Activating the locate button in Cuesta will cause a local Manatee to highlight the field found. Thisis a
quick and easy way to check whether the path is correct or not.

Grab screenshot H u

I&  Copy v  Up

Use the locate button
to find and highlight
a field from its path.

Remember to save
before clicking the
button.

Figure 3: Click the locate button to find and highlight the field

Sirenia 12



Fields September 23,2020

1.3.2 Using a flow or the debugger

It is also possible to use a flow or the REPL in the Debug. ger () to highlight, inspect or otherwise
manipulate and test a path. Fields can be created on-the-fly in a flow meaning that the following code
is a quick way to try out a path:

var f = new (’x*x/Panel/0k’) s

f. ()3 // to try and highlight the element
f. ()s // to try and click the element

1 ()s // to gain more info about the element

// and other field methods

2 Fields API

Once a field has been defined it can be used in a flow. Depending on the type of field (i.e. whether it
represents a button, a panel or something else) the following methods are available.

2.1 Click

Will click on the given field.

2.1.1 Parameters

« options an optional options object, supports;

+ deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

+ useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the un-
derlying model. Defaults to false (underlying model traversal).

+ useFieldCache boolean indicating whether to use a cache to lookup the field - may be sig-
nificantly faster in some cases - default false

« fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from the
cache (only relevant if useFieldCache is true) - default is configurable as a global option

Sirenia 13



Fields September 23,2020

2.1.2 Example

Fields[”mybutton”]. Os

// With an optional 500 ms deadline and try to retrieve the field from the cache
Fiels[”mybutton”]. ({ deadline: 500, useFieldCache: true });
2.1.3 Support

« ChromeDriver
IEDriver

JavaDriver

« NativeDriver

2.2 Click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

2.2.1 Parameters

« options anoptional options object, supports;

+ deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

+ useFieldCache boolean indicating whether to use a cache to lookup the field - may be sig-
nificantly faster in some cases - default false

« fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from the
cache (only relevant if useFieldCache is true) - default is configurable as a global option

2.2.2 Example

// Click myButton 10px from top and 10px from left
Fields[”mybutton”]. (10, 10);

Sirenia 14



Fields September 23,2020

2.2.3 Support

« JavaDriver
« NativeDriver

2.3 Simulated Click

Will simulate a mouse-click on the given field. The difference between simulate-click and click is only
relevant for Java applications where mouse-events can be generated directly (click) or as a series of
injected events - mousedown, mouseclicked, mouseup (simulateClick).

2.3.1 Example

Fields[”mybutton”]. Os

2.3.2 Support

« ChromeDriver
« JavaDriver

2.4 Simulated click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

2.4.1 Example

// Click myButton 10px from top and 10px from left
Fields[”mybutton”]. (10, 10);
2.4.2 Support

« JavaDriver
« NativeDriver

Sirenia 15



Fields September 23,2020

2.5 Rightclick

Will right-click on the given field.

2.5.1 Parameters

« options an optional options object, supports;

+ deadline the timein msto wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

+ useFieldCache boolean indicating whether to use a cache to lookup the field - may be sig-
nificantly faster in some cases - default false

« fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from the
cache (only relevant if useFieldCache is true) - default is configurable as a global option

2.5.2 Example

Fields[”mybutton”]. Os

2.5.3 Support

« ChromeDriver
« JavaDriver
« NativeDriver

2.6 Right-click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

2.6.1 Parameters

« options an optional options object, supports;

Sirenia 16



Fields September 23,2020

+ deadline the timein msto wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

+ useFieldCache boolean indicating whether to use a cache to lookup the field - may be sig-
nificantly faster in some cases - default false

« fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from the
cache (only relevant if useFieldCache is true) - default is configurable as a global option

2.6.2 Example

// Click myButton 10px from top and 10px from left
Fields[”mybutton”]. (10, 10);

2.6.3 Support

« JavaDriver
« NativeDriver

2.7 Double click

Will double-click on the given field.

2.7.1 Parameters

« options an optional options object, supports;

+ deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

+ useFieldCache boolean indicating whether to use a cache to lookup the field - may be sig-
nificantly faster in some cases - default false

« fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from the
cache (only relevant if useFieldCache is true) - default is configurable as a global option

Sirenia 17



Fields September 23,2020

2.7.2 Example

Fields[”mybutton”]. Os

2.7.3 Support

« ChromeDriver
« JavaDriver
« NativeDriver

2.8 Double-click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

2.8.1 Parameters

« options an optional options object, supports;

+ deadline the timein ms to wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

+ useFieldCache boolean indicating whether to use a cache to lookup the field - may be sig-
nificantly faster in some cases - default false

« fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from the
cache (only relevant if useFieldCache is true) - default is configurable as a global option

2.8.2 Example

// Click myButton 10px from top and 10px from left
Fields[”mybutton”]. (10, 10);
2.8.3 Support

« JavaDriver
« NativeDriver

Sirenia 18



Fields September 23,2020

2.9 Click cell

Click in a cellin table (only applicable for tables). Clicking a cell has the following variants:

o« clickCell(...) left-clickacell,
+ rightClickCell(...),and
« doubleClickCell(...).

All with the following parameters:

2.9.1 Parameters

« rowMatch atextto matchintherow-ifaninteger issupplied then thatis used to select the
row index
+ colMatch a text to match in a column header - also use an integer here to use the column
with that index
« options anoptions object on which the follow properties can be set;
- deadlinethetimein msto wait for the click to fail/succeed. If the click takes longer than
the deadline to fail or succeed it will be reported as succeeding to the caller.
- reflectionDepth indicates how deep to do the search for the rowMatch value (also
see Reflection depth)
- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to fa'lse (underlying model traversal).
- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false
- fieldCacheExpiryintindicatingthe useable age in seconds of thefield retrieved from
the cache (only relevantif useFieldCache is true) - default is configurable as a global
option

2.9.2 Example

// Click in the cell defined by its row containing ’A’ and its column (header) c

Fields[”myTable”]. (’A’, ’B’)3s

// The same command but use reflection depth to do a deeper search
Fields[”myTable”]. (’A’, ’B’, { reflectionDepth: 2 })3

// Click row 10 in column with header °’B’

Fields[”myTable”]. (10, ’B’, { reflectionDepth: 2 })3

// Click row 10 in column 1

Fields[”myTable”]. (10, 1, { reflectionDepth: 2 })3

Sirenia 19



Fields September 23,2020

2.9.3 Support

« NativeDriver
« JavaDriver

2.10 Read

Will read the value of the field. Depending on the type of the field the behavior will differ, e.g. on a
label it will return the text content of the label, for a text-field it will return the contents of the text-field.
For a more complex container type it will return a JSON representation of the control (which can be
natively accessed in the flow as an object). See JSON serialisation for details on how different types
are serialised.

2.10.1 Parameters

« options an optional options object with details regarding the inspection.

- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiryintindicatingthe useable age in seconds of thefield retrieved from
the cache (only relevantif useFieldCache is true) - default is configurable as a global
option

2.10.2 Example

var contents = Fields[”mytextfield”]. O

2.10.3 Support

ChromeDriver

IEDriver (complex content not supported)
JavaDriver

NativeDriver

Sirenia 20



Fields September 23,2020

2.11 Bounds

This can be used to get the bounds (location and size) of the field.

var b = Field[”0K”]. Os
// b is now an object e.g.
// { width: 100, height: 100, x: 10, y: }

2.12 Exists

Returns true if the field could be found.

2.12.1 Example

if(Fields[”mytextfield”]. 0O) {

2.12.2 Support

« ChromeDriver
« |EDriver

» JavaDriver

« NativeDriver

2.13 Inspect

Inspect a given field. The returned object will contain misc information about the field - the type of
information depends on the type of the field.

2.13.1 Parameters

« options an optional options object with details regarding the inspection.
- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

Sirenia 21



Fields September 23,2020

- includeChildren booleanindicatingif the children of the targeted element should be
included in the result. Defaults to true. Set to false when targeting a high level container
as the result may otherwise be a bit unwieldy.

- reflectionDepth (see below)

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiryintindicatingthe useable age in seconds of thefield retrieved from
the cache (only relevantif useFieldCache s true) - default is configurable as a global
option

2.13.2 Reflection depth

You can optionally obtain more detailed information about the data in eg treeviews. To do this, pass
a positive reflectionDepth value as shown in the examples below.

As an example, reflectionDepth: 3 means the result includes fields such as arrival.date.day (3
steps) but noteg patient.eyes.left.tla (4 steps).

The reflectionDepth paramater affects the data available in the output under the objects in the
control in question (eg treeview nodes). The main use of this feature is to determine which patterns
tousewith Field[’field’].select () whensimply selecting the rendered text doesn’t work.

2.13.3 Example

var info = Fields[”mytextfield”]. Os
// See which information was returned
Debug. (JSON. (info))s

// If info has a ‘text‘ property, then this will show the text
Debug. (info. )3

var detailedInfo = Fields[”myTreeView”]. ({ reflectionDepth: 2})3
// This object includes extra data under the nodes of ’myTreeView’.
Debug. (JSON. (detailedInfo))s

2.13.4 Support

« JavaDriver
« NativeDriver

Sirenia 22



Fields

September 23,2020

2.14 Input

Input a text value into a textfield/textbox/etc.

2.14.1 Parameters

« textthetexttoinput

« options an optional options object.

useCachedUI an optional boolean indicating if Ul component lookup should use the Ul
itself or the underlying model. Defaults to false (underlying model traversal).
fileanoptionalbooleanindicatingif the field is an htmlfile input, which requires special
treatment. If this is set to true, then the value must be a valid path that points to a file or
an exception may be thrown. Only applicable to web apps.

useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false
fieldCacheExpiryintindicatingthe useable age in seconds of the field retrieved from
the cache (only relevantif useFieldCache is true) - default is configurable as a global
option

2.14.2 Example

Fields[”mytextfield”]. (”some text”);

Fields[”myFileField”]. (”C:\\some\\file.txt”, { file: true });

2.14.3 Support

« ChromeDriver

o |EDriver

« JavaDriver

« NativeDriver

2.15 Native input

Inputs text into a field using native events, i.e. simulating keyboard input. This is useful for fields

which does validation (e.g. date-fields or similar). Use only if the i nput method does not work.

Sirenia

23


https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file

Fields September 23,2020

2.15.1 Parameters

+ text the text to input - you can use <backspace> to indicate a backspace/delete action, as
well as <enter> and <tab>.

2.15.2 Example

Fields[”mydatefield”]. (”111120117)
Fields[”mydatefield”]. (”123<backspace>”)s // field will contain 12’
2.15.3 Support

o ChromeDriver
« NativeDriver
« JavaDriver

2.16 Native input with delay

Inputs text into a field using native events with a given delay between each keystroke simulating key-
board input. This is useful for fields which does validation (e.g. date-fields or similar). Use only if the
input method does not work.

2.16.1 Parameters

+ text the text to input
« delay the number of milliseconds to wait between each "keystroke”

2.16.2 Example

Fields[”mydatefield”]. (”some text”, 100);

2.16.3 Support

« ChromeDriver
« JavaDriver

Sirenia 24



Fields

September 23,2020

2.17 Select

Select a value. This only works for dropdowns, listboxes, tabs and tree-views.

Note that for tree-views the value given to this function may be an expression which matches the path

to a leaf. E.g. for the following tree:

— X

y

The node c may be selected by:

Fields[”tree”]. (”a/b/c”)s

2.17.1 Parameters

+ value the value to select. By default value is treated as a regular expression, where char-

acters like ., x and ( have special meaning. If you want a literal match you need to surround
value with <<and >>,e.g. select (’<<’+v+’>>’) where v is the literal value to match.

« options an optional options object with details regarding the selection.

- deadline the time in ms to wait for the select to fail/succeed. If the select takes longer

than the deadline to fail or succeed it will be reported as succeeding to the caller.
reflectionDepth an option indicating how far the select matching should dive into
java objects (eg treeview nodes). Setting this too high may negatively affect performance.
Defaults to 0. Use the inspect method to determine how to match against this informa-
tion and what an appropriate (minimal) reflection depth is.

useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false
fieldCacheExpiryintindicatingthe useable age in seconds of the field retrieved from
the cache (only relevantif useFieldCache is true) - default is configurable as a global

option

Sirenia

25



Fields September 23,2020

2.17.2 Example

// Select ”optionl” and use reflectionDepth to to try and find ”optionl”
Fields[”mytree”]. (Poptionl”, { reflectionDepth: 2 })3

2.17.3 Support

ChromeDriver
IEDriver

JavaDriver

« NativeDriver

2.18 Select with index

Select a value based in an index. This only works for dropdowns, tabs, listboxes and tree-views.

2.18.1 Parameters

« index istheindexin the combo, listbox or tree to select.
« options an optional options object with details regarding the selection.
- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).
- useF1ieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false
- fieldCacheExpiryintindicatingthe useable age in seconds of thefield retrieved from
the cache (only relevantif useFieldCache s true) - default is configurable as a global
option

2.18.2 Example

Fields[”mycombo”]. (5);

2.18.3 Support

« JavaDriver
« NativeDriver

Sirenia 26



Fields September 23,2020

2.19 Select with offset

Select a value (with an offset). This only works for dropdowns, tabs, listboxes and tree-views.

2.19.1 Parameters

« valuethevaluetobaseselection on. The value needs only to partially match the shown option
to be selected, e.g. using utte” in a list containing the item "butter” will select it.

”-I ”»

« offset (int) the offset which will be used to do actual selection. E.g. if "1” then the next ele-

ment (which was found using value will be selected).

2.19.2 Example

Fields[”mytree”]. ("optionl”, 1)3

2.19.3 Support

« JavaDriver

2.20 Select with offset and skip

Select a value (with an offset and skip). This only works for dropdowns, tabs, listboxes and tree-views.

2.20.1 Parameters

« valuethevaluetobaseselection on. The value needs only to partially match the shown option
to be selected, e.g. using "utte” in a list containing the item "butter” will select it.

« offset (int) the offset which will be used to do actual selection. E.g. if ”1” then the next ele-
ment (which was found using value will be selected).

+ skip will select the N’th match to start from. E.g. 1 will skip the first match and select the 2nd.

2.20.2 Example

Fields[”mytree”]. (”optionl”, 1, 1)3

Sirenia 27



Fields September 23,2020

If used on e.g. a combobox with options; ["option1”, "option2”, "option1”, “option3”] the code-
fragment above will select "option3”. This is done by first looking for all "option1”s. Then skip 1 this
will get you the 2nd "option1”, then offset by 1 which will get you "option3”.

2.20.3 Support

« JavaDriver

2.21 Edit cell

Can be used in a table to edit a given cell.

2.21.1 Parameters

« row the row in which to find the cell (match any cell in the row) or use an integer to denote
the row index to edit
column the column in which to find the cell (must match a single column) or use an integer

to denote the column index to edit
« value thevalue to putinto the cell (works with textfield and dropdowns)

optionsisan optional argument, which can contain:

- reflectionDepth used to finding the value if there is e.g. a combobox in the cell to
edit (also see Reflection depth)

- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiryintindicatingthe useable age in seconds of thefield retrieved from
the cache (only relevantif useFieldCache is true) - default is configurable as a global
option

2.21.2 Example

Given the following table:

header1 header2

cell1 cell 2

Sirenia 28



Fields September 23,2020

header1 header2

cell 3 cell 4

This command:

Fields[”mytable”]. (”cell 3”, ”header 2”7, ”boom”)}

Will result in this table:

header1 header2

cell1 cell 2

cell 3 boom

The same thing can be accomplished if the indices are known:

Fields[”mytable”]. (1, 1, ”boom”)3

2.22 Highlight

Highlight the given field with the default color.

2.22.1 Example

Fields[”myfield”]. oF

2.22.2 Support

« ChromeDriver

IEDriver
JavaDriver

« NativeDriver

2.23 Highlight with color

Highlight the given field with the given color. Available colors are red, green and blue.

Sirenia 29



Fields September 23,2020

2.23.1 Parameters

« color the highlighting color - red, green or blue.

2.23.2 Example

Fields[”myfield”]. (”blue”)

2.23.3 Support

ChromeDriver

IEDriver

JavaDriver

NativeDriver

2.24 Lowlight

Cancel a highlight on a field.

2.24.1 Example

Fields[”myfield”]. oF

2.24.2 Support

« ChromeDriver
« |EDriver
« JavaDriver

Sirenia 30



	Defining a field
	Paths to fields
	Path segments
	Special and advanced techniques

	Optical fields
	Using the built-in screenshot-taker

	Testing a path
	Using Cuesta
	Using a flow or the debugger


	Fields API
	Click
	Parameters
	Example
	Support

	Click with offset
	Parameters
	Example
	Support

	Simulated Click
	Example
	Support

	Simulated click with offset
	Example
	Support

	Right click
	Parameters
	Example
	Support

	Right-click with offset
	Parameters
	Example
	Support

	Double click
	Parameters
	Example
	Support

	Double-click with offset
	Parameters
	Example
	Support

	Click cell
	Parameters
	Example
	Support

	Read
	Parameters
	Example
	Support

	Bounds
	Exists
	Example
	Support

	Inspect
	Parameters
	Reflection depth
	Example
	Support

	Input
	Parameters
	Example
	Support

	Native input
	Parameters
	Example
	Support

	Native input with delay
	Parameters
	Example
	Support

	Select
	Parameters
	Example
	Support

	Select with index
	Parameters
	Example
	Support

	Select with offset
	Parameters
	Example
	Support

	Select with offset and skip
	Parameters
	Example
	Support

	Edit cell
	Parameters
	Example

	Highlight
	Example
	Support

	Highlight with color
	Parameters
	Example
	Support

	Lowlight
	Example
	Support



